TEST METHODS FOR EVALUATING EXISTING FOUNDATIONS

Document no: FPA-SC-02
Developed by: FPA Structural Committee
Committee chairs: Main Committee - Ron Kelm, P.E.
 Subcommittee - Al Bustamante, P.E.
Subcommittee: Gerard Duhon, Denis Hanys, Ron Kelm,
 Gerard Lowe, Bob Newman, Michael Skoller,
 George Wozny, Nicole Wylie
Presented by: Al Bustamante, P.E.,
 Wiss, Janney, Elstner Associates, Inc.
Presented to: Foundation Performance Association
Presented on: August 11, 2010

Al Bustamante, Wiss, Janney, Elstner Associates, Inc.
OUTLINE

• Introduction
• Test Methods
• Foundation Characteristics and Defects
• Summary Table
• Case Study - Slab-on-Ground Cracking
• Key resources
• Conclusions
Introduction

• Scope
 • Document type - general guideline
 • Audience - Engineers
 • Type of foundation - lightly loaded foundations and pavement
 • Material - concrete
 • Geographic boundary – Houston
 • Safety issues – not addressed
Introduction

• General Considerations

• Cost

 - Rental
 - Equipment
 - Professional services

• Calibration

 - Test results
 - Proprietary equipment

• Test methods - not all-inclusive

Al Bustamante, Wiss, Janney, Elstner
Associates, Inc.
Introduction

- Format
 - General description
 - General applications
 - Some considerations
 - Relative cost
 - Additional resources
Test Methods
Test Methods – Carpenter Level

- Confirm elevation survey
- Levelness
- Plumb
Test Methods – Chain Dragging

• Estimate location and extent of delamination
Test Methods – Chloride Content

• Analyze for chlorides at the level of steel reinforcement
Test Methods – Concrete Cores

- Testing - Compressive strength
- Confirm dimensions
- Petrographic analysis
Test Methods – Concrete Screwdriver Test

- Relative hardness and durability
Test Methods – Geotechnical

• Causes and extent of foundation movement
Test Methods – Geotechnical

- Classify soil types
- Measure soil strength
- Report Atterburg limits
- Moisture content
- Ground water level
- Compaction
- Shear strength
- Active zone depth
- Swell potential
- Potential vertical movement (PVM)
Test Methods – Ground Penetrating Radar

- Location, depth, spacing of steel reinforcement
- Presence of utility lines
- Voids underneath a slab
- Delamination
- Slab thickness
- Soil strata
Test Methods – Ground Probing

- Depth of perimeter grade beams
- Soil type and color
- Soil moisture condition
- Relative soil shear strength
Test Methods – Half Cell Potential

- Probability of steel reinforcement corrosion
Test Methods – Hammer Sounding

• Presence of delamination and voids
Test Methods – Impact Echo

- Delamination
- Internal voids
- Honeycombs
- Voids underneath a slab
Test Methods – Inspection Openings and Excavations

Inspection opening

Test pit excavation

Al Bustamante, Wiss, Janney, Elstner Associates, Inc.
Test Methods – Inspection Openings and Excavations

• Inspection opening
 ▪ Size and placement of steel reinforcement
 ▪ Presence of vapor retarder below a slab
 ▪ Slab thickness

• Excavations
 ▪ Grade beam and bell pier dimensions
 ▪ Presence of plumbing lines
 ▪ Free water elevation and condition of fill

Al Bustamante, Wiss, Janney, Elstner
Associates, Inc.
Test Methods – Laser Level

- Floor elevations
Test Methods – Manometer

• Floor elevations

Closed Liquid/Gas

Water

Al Bustamante, Wiss, Janney, Elstner Associates, Inc.
Test Methods – Metal Detector

- Presence and general location of steel reinforcement
Test Methods – Optical Level

- Floor elevation
Test Methods – Petrographic Examinations

- Coarse aggregate segregation
- Air voids
- Poor curing
- Relative water cementitious ratio
- Relative age of cracks
- Type of cracks
- Detrimental chemical reactions – ASR, DEF
Test Methods – Plumbing Leak Detection

- Foundation movement due to below slab water leaks
Test Methods – Post-tension Lift-Off

- Measure effective tendon force in unbonded post-tensioned tendons
Test Methods – Post-tension Screwdriver Penetration

- Evaluate presence of tension in post-tensioned tendons
Test Methods – Rebound Hammer

• Relative hardness of concrete
Test Methods – Reinforcement Locator

• Spacing, size, and depth of steel reinforcement

Al Bustamante, Wiss, Janney, Elstner Associates, Inc.
Test Methods – Resistivity

- Evaluate effects of
 - Location of pre-existing ponds, foundation, lakes, etc
 - Accumulation of ground water
 - Plumbing leaks
 - Poor drainage
 - Location of pipes
 - Soil strata variations
 - Tree root zones
Test Methods – Ultrasonic Pulse Velocity

- Internal cracking
- Voids
- Honeycomb
Test Methods – Vapor Transmission

• Adequacy of slab-on-ground to receive floor finishes
Test Methods – Visual
Test Methods – Visual

- Apparent damages
- Drainage
- Movement of flatwork
- Moisture conditions
- Soil condition
- Trees
- Topography
- Condition of exposed portion of foundations
Foundation Characteristics and Defects
Foundation Characteristics

- Concrete dimensional properties
- Concrete distress
 - Cracking
 - Delamination
 - Detrimental chemical reactions
 - Honeycombing
 - Joint deficiencies
 - Slab curling and warping
 - Spalling
Foundation Characteristics

- Concrete material properties
 - Air entrainment
 - Chloride content
 - Compressive strength
 - Durability
 - Hardness
 - Unit weight
 - Water cementitious ratio
Foundation Characteristics

• Post-tensioned reinforcement characteristics
 • Anchorages
 • Grease
 • Sheathing
 • Strand
 • Tendon
 • Tendon profile
Foundation Characteristics

- Soil characteristics
 - Moisture content
 - Plasticity index
 - Soil shear strength
 - Soil strata location
 - Soil type and color
 - Tree root
 - Water table presence/location
Summary Table
<table>
<thead>
<tr>
<th>Characteristics and Deficiencies</th>
<th>Test Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Carpenter level</td>
<td></td>
</tr>
<tr>
<td>2.2 Chain dragging</td>
<td></td>
</tr>
<tr>
<td>2.3 Chloride ion testing</td>
<td></td>
</tr>
<tr>
<td>2.4 Concrete cores</td>
<td></td>
</tr>
<tr>
<td>2.5 Concrete-screedriver test</td>
<td></td>
</tr>
<tr>
<td>2.6 Geotechnical</td>
<td></td>
</tr>
<tr>
<td>2.7 Ground penetrating radar (GPR)</td>
<td></td>
</tr>
<tr>
<td>2.8 Halide cell potential (HCL)</td>
<td></td>
</tr>
<tr>
<td>2.9 Harman sounding</td>
<td></td>
</tr>
<tr>
<td>2.10 Impact echo</td>
<td></td>
</tr>
<tr>
<td>2.11 Inspection opening/excavation</td>
<td></td>
</tr>
<tr>
<td>2.12 Last level</td>
<td></td>
</tr>
<tr>
<td>2.13 Laser meter</td>
<td></td>
</tr>
<tr>
<td>2.14 Mass spectrometer</td>
<td></td>
</tr>
<tr>
<td>2.15 Meal detector</td>
<td></td>
</tr>
<tr>
<td>2.16 Optical level</td>
<td></td>
</tr>
<tr>
<td>2.17 Radiographic examination</td>
<td></td>
</tr>
<tr>
<td>2.18 Radiographic leak detection</td>
<td></td>
</tr>
<tr>
<td>2.19 Post-tension tendon lift off</td>
<td></td>
</tr>
<tr>
<td>2.20 Post-tension tendons screw driver</td>
<td></td>
</tr>
<tr>
<td>2.21 Resound hammer</td>
<td></td>
</tr>
<tr>
<td>2.22 Reinforcement locator (RD)</td>
<td></td>
</tr>
<tr>
<td>2.23 Reflectometry</td>
<td></td>
</tr>
<tr>
<td>2.24 Ultrasonic pulse velocity</td>
<td></td>
</tr>
<tr>
<td>2.25 Vapour transmission</td>
<td></td>
</tr>
<tr>
<td>2.26 Visual</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics and Deficiencies

<table>
<thead>
<tr>
<th>Concrete Dimensional Properties</th>
<th>Test Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>---------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Grade beam dimensions</td>
<td></td>
</tr>
<tr>
<td>Pier dimensions</td>
<td></td>
</tr>
<tr>
<td>Slab levelness and flatness</td>
<td></td>
</tr>
<tr>
<td>Slab thickness</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concrete to Defects</th>
<th>Test Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Coarse aggregate segregation</td>
<td></td>
</tr>
<tr>
<td>Cracking/types of cracking</td>
<td></td>
</tr>
<tr>
<td>Delamination</td>
<td></td>
</tr>
<tr>
<td>Detrimental chemical reactions</td>
<td></td>
</tr>
<tr>
<td>Honeycombing</td>
<td></td>
</tr>
</tbody>
</table>
Case Study
Case Study – Slab-on-Ground Cracking
Case Study

- Warehouse located in Houston, TX
- Reinforced concrete slab-on-ground
 - 6” thick
 - Vapor retarder below slab-on-ground
 - No. 4 bars at 18” o.c. each way
 - Control joint spacing at ~ 21’ o.c.
Case Study – Slab Cracking

View of a typical aisle in the east-west direction.

Crack previously repaired with epoxy injection

Al Bustamante, Wiss, Janney, Elstner Associates, Inc.
Case Study – Slab Cracking

- Random crack pattern
- Typical cracks located roughly in the middle of an aisle

Al Bustamante, Wiss, Janney, Elstner Associates, Inc.
Case Study – Slab Cracking

View of a crack pattern thought to be from a crane load stabilization point

Surface crazing cracking

Al Bustamante, Wiss, Janney, Elstner Associates, Inc.
Case Study – Spalling

Surface spall next to a pallet

Spall at edge of new concrete placed at equipment at overhead door (see arrow)

Al Bustamante, Wiss, Janney, Elstner
Associates, Inc.
Case Study – Joint Distress

Spall and cracks at control joint

Missing control joint material (arrow)

Al Bustamante, Wiss, Janney, Elstner Associates, Inc.
Case Study – Crack Mapping

Grid layout for detailed crack mapping area

Al Bustamante, Wiss, Janney, Elstner Associates, Inc.
Case Study – Crack Mapping

Al Bustamante, Wiss, Janney, Elstner Associates, Inc.
Case Study – Concrete Core Extraction
Case Study – Soil Boring
Case Study – Inspection Opening

Rebar located at the bottom of the slab. Note no cracking propagating from bottom of the control joint. (arrow.)
Case Study – GPR Testing

Al Bustamante, Wiss, Janney, Elstner Associates, Inc.
Case Study – GPR Testing

Figure 3. Original GPR Signal: Note variances in rebar and slab depths.
Case Study – GPR Testing

Figure 4. Migrated Data: Data points are shown for top of rebar (pink) and for bottom of the slab (blue).
Case Study – GPR Testing

GPR Data - Run No. 1 (East-West at Grid 3.3)
Refer to Fig. P3 for Location of GPR Runs

Depth from Top of Slab-on-Grade (in.)

Distance (ft)

Al Bustamante, Wiss, Janney, Elstner
Associates, Inc.
Case Study – Design and Construction Deficiencies

Control (Contraction) Joints

<table>
<thead>
<tr>
<th>As Detailed</th>
<th>Industry Standard</th>
<th>As–Built</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Control Joint
Detail: 6/23.01</td>
<td>Types of Control Joint
ACI 302R.1–96
Figure 3.2.5.3.a</td>
<td>![Image of as-built control joint]</td>
</tr>
<tr>
<td>Slab on Grade
TYP CONTROL JOINT
Drawing taken from original structural drawings dated 3–19–02</td>
<td></td>
<td>![Image of as-built control joint]</td>
</tr>
<tr>
<td>Control Joint
Saw cuts were made too late
Note that there is no crack below control joint
Vapor retarder directly below concrete
No cut or discontinuous reinforcing bars
Reinforcing at slab cut #2 (Approx Grid C, 2.2)</td>
<td></td>
<td>![Image of as-built control joint]</td>
</tr>
</tbody>
</table>

Al Bustamante, Wiss, Janney, Elstner Associates, Inc.
Case Study – Design and Construction Deficiencies

Isolation Joint

<table>
<thead>
<tr>
<th>As Detailed</th>
<th>Industry Standard</th>
<th>As-Built</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image of As Detailed Diagram]</td>
<td>![Image of Industry Standard Diagram]</td>
<td>![Image of As-Built Image]</td>
</tr>
</tbody>
</table>

Notes:
- **NOT AN ISOLATION JOINT**
- **CONTROL JOINT BETWEEN COLUMN**
- **SLAB ON GRADE CONTROL JOINT AROUND STEEL COLUMN**
- **J OINT AROUND COLUMN (DETAIL 6/S3.01)**
- **Dowels thru joint and into pier cap prevent freedom of slab-on-grade movement**

Figures:
- ISOLATION JOINT ACI 302.1R-96
- FIGURE 3.2.5.1.a

Details:
- **ABSENCE OF ISOLATION JOINT BETWEEN COLUMN DIAMOND SHAPE BLOCK-OUT AND SLAB-ON-GRADE**
- **DOUBLE COLUMN AT BUILDING EXPANSION JOINT**
- **ABSENCE OF ISOLATION JOINT BETWEEN COLUMN DIAMOND SHAPE BLOCK-OUT AND SLAB-ON-GRADE**
- **BLOCK-OUT CORNER DOES NOT ALIGN WITH MAIN FLOOR JOINT**
- **NOT AN EXPANSION JOINT (SEE FIG. D-4)**

Reference:
Al Bustamante, Wiss, Janney, Elstner Associates, Inc.
Case Study – Design and Construction Deficiencies

Expansion Joints

<table>
<thead>
<tr>
<th>As Detailed</th>
<th>Industry Standard</th>
<th>As-Built</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As Detailed
- Joint width depends on slab length
- Smooth bar slip sleeve or greased
- Sealant
- Joint to fill material

Industry Standard
- Typical control joint (photograph taken at west end of slab cut #1)
- Note that there is no crack below control joint; this indicates saw cuts were made too late
- Vapor retarder directly below concrete

As-Built
- Typical control joint (photograph taken at south end of slab cut #1)
- Typical slab section (photograph taken at north end of slab cut #1)
- No cut or discontinuous reinforcing bars

Al Bustamante, Wiss, Janney, Elstner Associates, Inc.
Key Resources

- FPA SC-04 Recommended Practice for Geotechnical Explorations and Reports
- ACI 228.2R Nondestructive Test Methods for Evaluation of Concrete in Structures
- ICRI Guideline No. 03736 Guide for the Evaluation of Unbonded Post-tensioned Concrete Structures
Conclusion

Why do we test?

“Ask the Structure”…

Jack Janney

…but ask the right questions

Al Bustamante, Wiss, Janney, Elstner
Associates, Inc.
Questions?

Contact: Al Bustamante - abustamante@wje.com

Al Bustamante, Wiss, Janney, Elstner
Associates, Inc.