Using Slab-on-Ground Elevation Measurements in Residential Foundation Engineering Performance Evaluations
Introduction – A Critical Focus on Limitations

- Review of Historical Basis
- Review of Published Criticisms
- Geometry of Deformation Issues
- Construction Practices
- Code Requirements
- Evaluation Protocols Using Surface Elevation Measurements
- Forensic (Causation) Studies
- Real Estate Transactions
- Summary and Conclusions
Where Did This Idea Come From?

- Studies of Visually Apparent Building Response to Foundation Movement (Skempton and MacDonald, 1956)
 - Foundations were true structural foundations
 - Angular Distortion and Maximum Differential Settlement
 - Purpose was to develop threshold damage criteria to use in foundation design

- Studies of Residential Building Response to Foundation Movement (Day 1990)
 - Foundations were slab-on-ground foundations, not structural foundations
 - Purpose was to develop threshold damage criteria to use in foundation performance evaluations
 - What is the purpose of a damage criteria for performance evaluations?
Published Criticisms of the Levelness Approach

- Karl Terzaghi (1956)
 - Insufficient data for a statistical approach
 - Feared this approach would preclude new ideas

- F. H. Chen (1988)
 - Single elevation surveys should never be used
 - Engineers should use at least two surveys with a stable benchmark

 - Single elevation surveys may be misleading
 - Engineers should use two surveys

- Ken Bondy (2000)
 - Analysis of elevation survey data must take account of construction tolerances
Published Criticisms of the Levelness Approach - continued

- Walsh, Bashford and Mason (2001)
 - Statistical analysis of new slab-on-ground foundations indicate that use of surface elevation data is not reliable for forensic evaluations

 - Surface slope and maximum elevation difference are overly general and simple parameters for use in foundation performance evaluation

- Walsh and Miguel (2003)
 - Statistical analysis of new slab-on-ground foundations indicate current foundation surface elevation data analysis techniques are not repeatable or reliable for forensic evaluations
Foundation Deformation Geometry - Deflection Surface

plan view of a 30-foot by 60-foot slab-on-ground foundation distorted in both directions $l/360$
Foundation Deformation Geometry

- Curvature is not related mathematically to maximum elevation difference or to angular distortion.
- Maximum elevation difference is related to the deflection ratio and the foundation geometry.
- Maximum angular distortion is not related to the deflection ratio but the average slope is so related for a specific deflection curve shape.
Construction Practices

- Face Numbers
- $F = \frac{12.5}{(3\sigma + Z)}$
- If $F = 13$, $3\sigma = 0.962$ inches
- Maximum Elevation Difference is given by 6σ or 1.924 inches
- If $F = 10$, $Z = 1.25$ inches and maximum elevation difference equals $1.25 + 0.962$ inches or 2.12 inches
- Maximum slope is $1.25/120$ or 0.010 or $1.88/180$
Building Codes

- ACI 318
 - Elevated Structures versus Ground-Supported Structures
 - Computed design deflection criteria are not intended to be used as performance criteria for existing structures

- International Residential Code
 - Foundation must resist soil volume changes
 - No structural damage to the supported structure
 - Deflection and racking must not interfere with the usability and serviceability of the supported structure
Misconceptions Concerning Use of Design Deflection Criteria

- Load-deflection behavior of concrete beams is not consistent and predictable
 - Cannot predict load-deflection behavior with a single deflection ratio
 - Deflection calculations are approximations only
 - If the deflection is within realistic expectations cannot be called a failure

- Purpose of Design Calculations is not to predict structural behavior
 - Provides a basis for comparing designs and making better engineering judgments
Foundation Performance Evaluation Protocols

- PTI Bondy
 - The levelness of the foundation surface cannot be explained with reference to Face Numbers plus normal distortion
 - Visible damage to the supported structure near the location of excessive soil/foundation movement
 - The overall shape of the slab surface must be consistent with recognized patterns of foundation distortion
Criticism of Bondy

- Foundation levelness is not a construction control
- Slabs can be within ACI levelness criteria and be suffering from excessive deflection
- The distorted foundation surface may not conform to an center lift or a edge lift distortion mode
Foundation Performance Evaluation Protocols

- Robert W. Day

- Uses maximum angular distortion and maximum elevation difference

- Elevations are taken 15-feet apart to minimize influence of anomalies in the foundation surface

- Maximum angular distortion of 1/300 for cosmetic damage and 1/100 for structural damage
Foundation Performance Evaluation Protocols

- Criticism of Day
 - There is no evidence that a 15-foot grid solves the construction tolerance issue
 - Day’s damage criteria are less than construction tolerances
 - Day’s damage criteria do not address foundation repair
Foundation Performance Evaluation Protocols

- KESCORP Foundation Repair Protocol
 - The average slope of a deflection curve distorted to 1/360 is taken as a foundation repair criteria
 - Average slope is 1/180
Foundation Performance Evaluation Protocols

- Criticism of KESCORP Foundation Repair Protocol
 - Based on a one-way bending model that understates the average slope by 41%
 - Curvature is related to the rate of change in the slope, not to the slope itself
 - A slope of 1/180 is less than the maximum expected as-constructed slope of 1.88/180
 - Can easily mislead a homeowner into believing foundation repair is necessary
Foundation Performance Evaluation Protocols

- Finish Floor Profile Deflection Ratio Approach – Texas Section ASCE
 - Use elevation numbers to create a profile of the finish floor surface across the length and width of the slab-on-ground foundation
 - Make adjustments to accommodate construction tolerances
 - Compare the adjusted deflection ratio of the profile with 1/360
Forensic (Causation) Studies

- Assumed as-constructed foundation surface geometry is subjective and cannot be verified
- Survey methodology does not allow for calculating the error of closure
- Analysis of elevation data is not reliable or repeatable
- Expert testimony must be supported by adequate modeling or analysis
Real Estate Transactions

- Significance of time constraints
 - 7 to 10 day option period
 - Appointment to report delivery can be 24-hours or less
The Evaluation Addresses Different Questions than a Forensic (Causation) Evaluation

- Opinion Concerning the Performance of the Foundation
- Is Foundation Repair Needed?
 - The question of foundation repair is usually subjective
Summary and Conclusions

- No mathematical relation between foundation or maximum elevation difference and deflection surface curvature
- Levelness is neither a design nor a construction control
- Inadequate data for a statistical approach
- No standard measurement or analysis methodology
- No logical or empirical relation to foundation repair capabilities
- Subjective nature of elevation survey approach
- Propensity to Mislead
- An elevation measurement approach in causation studies may not be effective
- Elevation measurement approaches may not be the best way to address the pertinent questions for a real estate transaction