Coatings and Sealers for Protecting Concrete Facilities

C. Vipulanandan, Ph.D., P.E.
Professor of Civil Engineering
Director of CIGMAT
Director of THC-IT

Department of Civil and Environmental Engineering
University of Houston
Houston, Texas 77204-4003
1. Coating Forms A Barrier:

2. Sealers Makes it Less Permeable

3. Corrosive Environment

4. Control Moisture Movements

5. Easy to Apply, Rapid Results & Cost Effective (Saves $$)
What are the Technologies?

Corrosion Prevention / Maintenance

(i) Coatings
(ii) Linings
(iii) Chemical Spraying

Structural Rehabilitation

(i) Sliplining
(ii) Cure-in-place-pipe (CIPP)
(iii) Grouted Liners/Composites
The overall objective of this study was to investigate the performance of coated concrete (coatings, sealers) under various environments.

The specific objectives are as follows:

(1) to evaluate the applicability of the coatings on concrete surface under hydrostatic back pressure

(2) to determine the long-term performance of coated concrete/clay brick with and without pinholes in sulfuric acid and salt environments.
Laboratory Study On Coatings
Table 9.1 Types of Failures according to the CIGMAT CT-2 Test

<table>
<thead>
<tr>
<th>Failure Type</th>
<th>Description</th>
<th>CIGMAT CT 2 Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-B1</td>
<td>Substrate Failure</td>
<td>Concrete/Clay Brick</td>
</tr>
<tr>
<td>Type-B2</td>
<td>Coating Failure</td>
<td>Concrete/Clay Brick</td>
</tr>
<tr>
<td>Type-B3</td>
<td>Bonding Failure</td>
<td>Concrete/Clay Brick</td>
</tr>
<tr>
<td>Type-B4</td>
<td>Bonding and Substrate Failure</td>
<td>Concrete/Clay Brick</td>
</tr>
<tr>
<td>Type-B5</td>
<td>Bonding and Coating Failure</td>
<td>Concrete/Clay Brick</td>
</tr>
</tbody>
</table>

Table 9.2 Types of Failures according to the CIGMAT CT-3 Test

<table>
<thead>
<tr>
<th>Failure Type</th>
<th>Description</th>
<th>CIGMAT CT-3 Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type B1</td>
<td>Substrate Failure</td>
<td>Concrete/Clay Brick</td>
</tr>
<tr>
<td>Type B2</td>
<td>Coating Failure</td>
<td>Concrete/Clay Brick</td>
</tr>
<tr>
<td>Type B3</td>
<td>Bonding Failure</td>
<td>Concrete/Clay Brick</td>
</tr>
<tr>
<td>Type B4</td>
<td>Bonding and Substrate Failure</td>
<td>Concrete/Clay Brick</td>
</tr>
<tr>
<td>Type B5</td>
<td>Bonding and Coating Failure</td>
<td>Concrete/Clay Brick</td>
</tr>
</tbody>
</table>
2. Comparison of Modified ASTM D 4541 and ASTM C 321 Tests

Failure Strength from ASTM D 4541 Test (psi)

Failure Strength from ASTM C 321 Test (psi)

Failure Strength from ASTM D 4541 Test (MPa)

Failure Strength from ASTM C 321 Test (MPa)

Bonding Test Results in 6 Months

0 - 6 months

Bonding Strength from 6 month to One Year

6 months - 1 year

Bonding Strength after One Year

After 1 year
3. Bonding Failure Strength and Failure Types

- **COATING K**
 - N = 22

- **COATING T**
 - N = 23

- **COATING D**
 - N = 24

- **COATING R**
 - N = 24
Field Study
Vs.
Lab Study
Models for Liquid Transport into Coated Concrete and Calcium Leaching

1. Physical Model

Case 1: Liquid transport process without chemical reaction

Case 2: Liquid transport process with chemical reaction
2. Modeling

A. Assumptions:

(1) the process can be modeled by second order differential equation

\[
\frac{\partial S}{\partial t} = D \left(\frac{\partial^2 S}{\partial x^2} + \frac{\partial^2 S}{\partial y^2} + \frac{\partial^2 S}{\partial z^2} \right)
\]

(2) the mass transfer coefficient is constant in coating film (D_{CT}), non-reacted concrete cylinder (D_{CO}) or reacted concrete area ();

(3) there is no gradient of degree of saturation between bulk liquid and coating surface;

(4) coating film and concrete surface are in good contact;

(5) coating film does not react with contacted liquid;

(6) degree of saturation of solid is defined as .
B. Liquid Transport through Coating Film

The second order differential equation in one dimension

\[
\frac{\partial S}{\partial t} = D \frac{\partial^2 S}{\partial x^2}
\]

(1)

Boundary conditions:

at \(x = 0 \) \(S = S_0^{CT} \)
\(x = \ell \) \(S = S_i \)

Solving equation (1)

\[
\frac{S - S_0^{CT}}{S_i^{CT} - S_0^{CT}} = \frac{x}{\ell}
\]

(2)

Consider the rate of mass transfer \(F \)

\[
F = -D_{CT} \left(\frac{\rho^{CT} dS}{dx} \right)
\]

(3)
Assume that the rate of mass transfer F is a constant from time t to $t + dt$

combining equation (2) and (3), the rate of mass transfer at time t is

$$F(t) = -D_{CT} \frac{dS}{dx} = \frac{D_{CT}}{\ell} \rho^{CT} \left(S_0^{CT} - S_i^{CT}\right)$$ \hspace{1cm} (4)

the concentration on the interface varying with time t can be represented by the exponential function

$$S_i^{CT} = S_0^{CT} \left(1 - e^{-\beta^{CT}t}\right)$$ \hspace{1cm} (5)

Equation (4) becomes

$$F(t) = \frac{D_{CT}}{\ell} \rho^{CT} S_0^{CT} e^{-\beta^{CT}t}$$ \hspace{1cm} (6)

The amount of the substance transported through coating film from time t to $t + dt$ is

$$dW_t = 2\pi RhF(t)dt$$ \hspace{1cm} (7)
Integrating equation (7) from time 0 to t

\[W_t = \frac{2\pi R \rho^{CT} S_0^{CT} D_{CT}}{\beta^{CT}} \left(1 - e^{-\beta^{CT} t}\right) \] \hspace{1cm} (8)

C. Liquid Transport in Coated Concrete Cylinder

(a) Liquid transport without chemical reaction

For mass transport in cylindrical media, the second order differential equation is

\[\frac{\partial S}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r D_{co} \frac{\partial S}{\partial r} \right) \] \hspace{1cm} (9)

If the concentrate at the concrete surface is \(\phi(t) \), the solution of the second order differential equation is

\[S = \frac{2D_{co}}{R} \sum_{n=1}^{\infty} \exp\left(-D_{co}\alpha_n^2 t\right) \frac{\alpha_n J_0\left(r\alpha_n\right)}{J_1\left(R\alpha_n\right)} \int_0^t \exp\left(D_{co}\alpha_n^2 \tau\right) \phi(\tau) d\tau \] \hspace{1cm} (10)

Assume the surface concentration is:

\[\phi(t) = S_o^{co} \{1 - \exp(-\beta_1 t)\} \]
The solution of equation (10) is

\[
\frac{S}{S_0^{\text{CO}}} = 1 - \frac{J_0\left(\sqrt{\frac{\beta R^2}{D_{\text{CO}}}}\right)}{J_0\left(\sqrt{\frac{\beta R^2}{D_{\text{CO}}}}\right)} \exp\left(-\beta t\right) + \frac{2\beta}{R D_{\text{CO}}} \sum_{n=1}^{\infty} \frac{J_0(r_{\alpha_n})}{\alpha_n J_1(r_{\alpha_n})} \frac{\exp\left(-D_{\text{CO}} \alpha_n^2 t\right)}{\left(\alpha_n^2 - \beta / D_{\text{CO}}\right)}
\]

(11)

The sorption rate is

\[
\frac{W_{t_{\text{CO}}}}{\pi R^2 \rho_{\text{CO}} S_0^{\text{CO}}} = 1 - \frac{2J_1\left(\sqrt{\frac{\beta R^2}{D_{\text{CO}}}}\right)}{J_0\left(\sqrt{\frac{\beta R^2}{D_{\text{CO}}}}\right)} \exp\left(-\beta t\right) + \frac{4}{R^2} \sum_{n=1}^{\infty} \frac{\exp\left(-D_{\text{CO}} \alpha_n^2 t\right)}{\alpha_n^2 \left(\frac{\beta}{D_{\text{CO}}}-1\right)}
\]

(12)

Calculated Sorption Curves
from equation (12)
Numbers on Curves Are
Values of $\sqrt{\frac{\beta R^2}{D_{\text{CO}}}}$
Define \(\lambda_{CO} = \beta R^2 / D_{CO} \)

Approximating this relationship and considering an exponential function of the form

\[
\frac{W_t^{CO}}{\pi R^2 \rho^{CO} S_0^{CO}} = \left\{ 1 - \exp \left[-\lambda_{CO} \left(\frac{D_{CO} t}{R^2} \right)^n \right] \right\}
\]

(13)

Values of Parameter \(n \) from Curve Fitting

<table>
<thead>
<tr>
<th>(\lambda_{CO})</th>
<th>(n)</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1.006</td>
<td>0.999</td>
</tr>
<tr>
<td>0.1</td>
<td>1.009</td>
<td>0.999</td>
</tr>
<tr>
<td>0.5</td>
<td>1.042</td>
<td>0.999</td>
</tr>
<tr>
<td>1</td>
<td>1.001</td>
<td>0.999</td>
</tr>
<tr>
<td>5</td>
<td>1.346</td>
<td>0.999</td>
</tr>
</tbody>
</table>

Comparison of standard curves and approximate solution
D. Verifications of Mass Transport Models

Film Model

Coating K (Dry Concrete) in D.I. Water

Coating K (Dry Concrete) in 3% sulfuric acid

Concrete Models

Coating K (Dry Concrete) in D.I. Water

Coating K (Dry Concrete) in 3% sulfuric acid
3. Calcium Leaching

Assume the rate of calcium leaching from coated concrete is of the first order kinetic of the total calcium leached (C_s)

$$\frac{dC_s}{dt} = \alpha(kM_c - C_s) \quad (17)$$

Integrating Equation (17) at $t = 0, C_s = 0$ and $t = t, C_s = C_s$

$$C_s = \pi R^2 h C_f (1 - e^{-\alpha t}) \quad (18)$$

The effect of pinhole sizes can be corrected by equation (16)
CONCLUSIONS

Based on the experimental results, the following observations are advanced

(1) **Hydrostatic Test:** used to evaluate the applicability of coatings onto concrete under hydrostatic back pressure with a moisture emission of 536 mg/(s.m²) (9.49 lb/(1000ft².24h)). Many coatings tested in the study were successfully applied on to the concrete surface. Some coating developed blisters during the testing period.
(2) **Chemical Test:** coated concrete specimens with pinholes failed sooner than without pinholes and the time to failure depended on the type of coating and pinhole size. Based on time-to-failure analysis, the selected coatings can prolong the service life of concrete by 14 and 57 times without failure. Testing coated concrete specimens with pinholes is considered to represent the critical condition in the field.

(3) **Bonding Test:** There was no direct correlation between bonding strength and chemical resistance of coated concrete.

(4) Although coatings can be of the same base material the performance can be totally different.
Protocols and Test Plans

- Verification Protocol for the Verification of Grouting Materials for Infrastructure Rehabilitation at the University of Houston - CIGMAT (September 2004)
- Generic Verification Protocol for Secondary Effluent and Water Reuse Disinfection Applications (October 2002)
- Protocol for the Verification of Chemically Enhanced High-Rate Separation (May 2000)
- Protocol for the Verification of Flowmeters for Wet Weather Flow Applications in Small - and Medium-Sized Sewers (September 2000)
- Protocol for the Verification of High-Rate Wet Weather Flow Disinfection Applications (July 2000)
Testing Composite Coating Systems with Silanes for Protecting Concrete Columns on the Galveston Causeway Project

by

C. Vipulanandan (Vipu) Ph.D., P.E.

Center for Innovative Grouting Materials and Technology (CIGMAT)
Department of Civil and Environmental Engineering
University of Houston
Houston, Texas 77204-4003
DOCUMENTS REVIEWED

1. NCHRP Report 244:
 Concrete Sealers for Protection of Bridge Structures

2. Florida Dot Standard:
 Specifications for Road and Bridge Construction
 Section 413: Sealing Concrete Structure Surfaces

3. Texas DOT Material Specifications
 Section 5. DMS-8110, Coatings for Concrete
 Section 9. DMS-8140, Concrete Surface Treatment (Penetrating)
CIGMAT Test Programs

1. Immersion Test (NCHRP 244) (including Ca$^{2+}$ Leaching) (CIGMAT CT-1)
2. Bonding Test (ASTM D 4541/CIGMAT CT-2)
3. Thermo Cycling Test (Long-term Durability)
4. Permeability Test (AASHTO T277-89)
OBJECTIVES

(1) Evaluate the effectiveness of Silanes in reducing the chloride (NaCl) infiltration (Immersion Test)

(2) Effect of Silanes on the performance of Latex Paints (Infiltration and Bonding)

(3) Long-term performance of Latex paints under temperature cycling.

(4) Chloride permeability of the uncoated and coated concrete
MATERIALS

Concrete

TxDOT Class F. (concrete specimens were cured for 28 days)

Silane

Silane 1

Silane 2

Coatings/ Latex Paint

Coating 1

Coating 2
TESTING PROCEDURES

Concrete Specimen Preparation

(1) Water blasting at 1500 psi to remove loose material on the surface;

(2) Drying for 2 days at room condition (23 ± 2 °C, 50 ± 5% RH);

(3) Applying Silane on concrete at 25 psi;

(4) Drying specimens for 7 days;

(5) Applying Latex on Silane coated concrete and uncoated concrete;

(6) Curing specimens for 4 days (room condition).
Immersion Test (Cylindrical Specimens)

1) Cylindrical specimens were immersed in tap water and 15% NaCl solution for 21 days;

2) Dry the specimens for 21 days;

3) In order to study pinhole effects on water and salt penetration, 1/8" pinholes were intentionally made on some of the specimens.
Bonding Test

1) The ASTM D 4541 test method was used to determine the bonding strength of Latex to concrete with/without Silane;

2) Prism specimens were coated in the same manner as the specimens for the immersion test;

3) The specimens were cured in the room condition, tap water and 15% NaCl solution;

4) Bonding strength was determined at the beginning and end of the immersion test.
Temperature Cycling Test

1) Temperature cycling test was performed on specimens coated with Sliane & Latex and Latex only;

2) The maximum temperature was 120 °F;

3) The specimens were at 120 °F for 3 days and at room condition for 1 day, then immersed in 15% NaCl for 3 days. Repeat the process.

4) Cylindrical specimens were used for the thermal cycle test.
Comparison of Batch 1 and Batch 2 Concrete

<table>
<thead>
<tr>
<th>Batch</th>
<th>Average Weight of Specimens (g)</th>
<th>Density (lb/ft³)</th>
<th>Density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1559.36</td>
<td>140.16</td>
<td>2247.2</td>
</tr>
<tr>
<td>2</td>
<td>1636.21</td>
<td>147.07</td>
<td>2358.0</td>
</tr>
</tbody>
</table>
Comparison of Batch 1 and Batch 2 Concrete in Water and 15% NaCl

Uncoated specimens in water and 15% NaCl solution

Weight Change % vs. Immersion Time, days

- Batch 1 in water
- Batch 1 in 15% NaCl
- Batch 2 in water
- Batch 2 in 15% NaCl
Silane Coated Concrete in Water and 15% NaCl Solution

Weight Change %

Immersion Time, days

SW-244-40

Silane coated specimens

Batch 1 in water
Batch 1 in 15% NaCl
Batch 2 in water
Batch 2 in 15% NaCl
Batch 2 in 15% NaCl
Coating-1 & -2 Coated Concrete in Water – Batch 2 Concrete

Latex 1 and Latex 2 coated concrete in water

Weight Change, %

Immersion Time, days
Latex 1 and Latex 2 Coated Concrete in 15% NaCl – Batch 2 Concrete

![Graph showing weight change over immersion time for Latex 1 and Latex 2 coated concrete in 15% NaCl.](image)
Latex-1, Latex-2 and Silane Coated Concrete in Water – Batch 2 Concrete

Latex 1 and Latex 2 with Silane coated concrete in water

Weight Change, %

Immersion Time, days

- Latex 1 in water
- Latex 1 in water
- Latex 2 in water
- Latex 2 in water
Latex-1, Latex-2 and Silane Coated Concrete in 15% NaCl – Batch 2 Concrete

Weight Change, %

Immersion Time, days

Latex 1 and Latex 2 with Silane coated concrete in 15% NaCl

Latex 1 in 15% NaCl
Latex 1 in 15% NaCl
Latex 2 in 15% NaCl
Latex 2 in 15% NaCl
Silane Coated Concrete with/without Pinhole
in 15% NaCl – Batch 2 Concrete

SW-244-40
Silane coated specimens

Weight Change %

Immersion Time, days

C I G M A T
Latex-2 Coated Concrete with/without Pinhole in 15% NaCl – Batch 2 Concrete

Latex 2 coated concrete with/without pinholes in 15% NaCl

- Latex 2 without pinhole
- Latex 2 without pinhole
- Latex 2 with a 1/8” pinhole
- Latex 2 with a 1/8” pinhole
Latex-2 and Silane Coated Concrete with/without Pinhole in 15% NaCl – Batch 2 Concrete

![Graph showing weight change over immersion time for Latex-2 and Silane coated concrete with and without pinholes in 15% NaCl.](image-url)
Figure 9.6 Residual weight changes after immersion of specimens (silane, coated concrete, silane + coated concrete in 15% NaCl solutions.)
Latex-1 and Latex-2 Coated Concrete

Type 1 Concrete Failure
Type 2 Latex Failure
Type 3 Bonding Failure

Latex coated concrete at the beginning of the immersion test
Latex-1, Latex-2 and Silane Coated Concrete

Type 1 Concrete Failure
Type 2 Latex Failure
Type 3 Bonding Failure

Latex and Silane coated concrete at the beginning of the immersion test

![Graph showing bonding strength for different specimens](image)
Temperature Cycling Test

The thermal cycle test is on going.

Latex 1, Latex 2 and Silane coated concrete in thermal cycle test

Weight Change, %

Cycle
Chloride Penetration Test Results

Chloride Penetration Tests

Batch 1 with Silane 244
Batch 1 without Silane
Batch 2 without Silane

Batch 1 without silane = 1404 coulombs

Chloride Permeability
Batch 1 with silane -2 40
Batch 2 without silane 157
Chloride Permeability (AASHTO)

TABLE 1 Chloride Permeability Based on Charge Passed (from Reference 2)

<table>
<thead>
<tr>
<th>Charge Passed (coulombs)</th>
<th>Chloride Permeability</th>
<th>Typical of—</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 4,000</td>
<td>High</td>
<td>High water-cement ratio, conventional (>0.6) PCC</td>
</tr>
<tr>
<td>2,000-4,000</td>
<td>Moderate</td>
<td>Moderate water-cement ratio, conventional (0.4-0.5) PCC</td>
</tr>
<tr>
<td>1,000-2,000</td>
<td>Low</td>
<td>Low water-cement ratio, conventional (<0.4) PCC</td>
</tr>
<tr>
<td>100-1,000</td>
<td>Very Low</td>
<td>Latex-modified concrete</td>
</tr>
<tr>
<td><100</td>
<td>Negligible</td>
<td>Internally sealed concrete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polymer impregnated concrete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polymer concrete</td>
</tr>
</tbody>
</table>

CONCLUSIONS

(1) Latex-2 is showed better bonding strength with concrete than Latex-1.

(2) Silane-2 (SW 244-20) reduced the bonding strength between Latex-2 and concrete.

(3) Immersion, Thermo-cycling and Bonding Tests with Silane -2 and Latex-2 were Acceptable.

(4) Chloride Permeability Test Results were Acceptable.