QUALITY CONTROL CHECKLISTS
FOR FOUNDATION INSPECTION OF
RESIDENTIAL AND OTHER LOW-RISE BUILDINGS

by
The Structural Committee
of
The Foundation Performance Association
www.foundationperformance.org
Houston, Texas

Document # FPA-SC-10-1

ISSUE HISTORY (Initial issue and issues outside the Structural Committee)

<table>
<thead>
<tr>
<th>Rev#</th>
<th>Date</th>
<th>Description</th>
<th>Subcommittee Chair</th>
<th>Subcommittee Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>02 Oct 01</td>
<td>For Committee Comments</td>
<td>Jack Spivey</td>
<td>Ron Kelm, Jon Monteith, Michael Skoller, Terry Taylor, Mari Mes, Mike Palmer, Lowell Brumley, George Wozny, Dan Jaggers, Toshi Nobe</td>
</tr>
<tr>
<td>I</td>
<td>10 Jul 03</td>
<td>For FPA Peer Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>09 Oct 03</td>
<td>For FPA Web Site Publishing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0A</td>
<td>18 May 05</td>
<td>For Committee Comments</td>
<td>Jack Spivey</td>
<td>Michael Skoller, Ron Kelm, Mari Mes, Dan Jaggers, Jon Monteith, Dick Peverley</td>
</tr>
<tr>
<td>0K</td>
<td>06 Nov 06</td>
<td>For FPA Peer Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>19 Feb 07</td>
<td>For FPA Web Site Publishing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preface

This document was written by the Structural Committee and was first peer reviewed by the Foundation Performance Association (FPA) and published as Revision 0 on 9 October 2003. After obtaining additional feedback, it has been updated by the Structural Committee to Revision 1 and has again been peer reviewed. This document is made freely available to the public at www.foundationperformance.org so all may have access to the information. To ensure this document remains as current as possible, it may be periodically updated under the same document number but with higher revision numbers such as 2, 3, etc.

The Structural Committee is a permanent committee of the Foundation Performance Association. At the time of writing this document, Ron Kelm, P.E., chaired the Structural Committee of 25 to 30 active members. The committee sanctioned this paper and formed a subcommittee to write the document. The subcommittee chair and members are listed on the cover sheet of this document.

Suggestions for improvement of this document shall be directed to the current chair of the Structural Committee. If sufficient comments are received to warrant a revision, the committee will form a new subcommittee to revise this document. If the revised document successfully passes FPA peer review, it will be published on the FPA website and the previous revision will be deleted.

The intended audiences for the use of this document are field inspectors, builders, builders’ superintendents, municipal inspectors, or anyone with an interest in quality construction or repair of foundations.

This document was created with generously donated time in an effort to improve the performance of foundations. The Foundation Performance Association and its members make no warranty, expressed or implied, regarding the accuracy of the information contained herein and will not be liable for any damages including but not limited to consequential damages resulting from the use of this document. Each project should be investigated for its individual characteristics to permit appropriate application of the material contained herein.
INTRODUCTION

The following checklist documents are related to two years of work completed in the late nineteen nineties by the Inspections Subcommittee of the Foundation Performance Committee (the name was since changed to Foundation Performance Association, or FPA). Jack Spivey chaired that original committee and his fellow members were:

MR. MICHAEL SKOLLER P.E.
MR. JOE EDWARDS
MR. LOWELL BRUMLEY P.E.
MR. DEAN EICHELBERGER

Meetings took place on a monthly basis and were attended by many interested parties. Special recognition should be given to Mr. Jim Dutton of Du-West Foundation Repair and Mr. Dan Jaggers of Olshan Foundation Repair. Their assistance with the foundation repair sections was invaluable. The topics for discussion were established at the onset of the meetings with the general intent to establish a set of guidelines and procedures for the inspection of foundation construction and foundation repairs incorporated into an easy to use inspection document. It was established that the best form for our purposes would be a simple checklist, which would fully cover the subject of the inspection. It was also determined that keeping each checklist to one page would afford the most user-friendly instrument for our purposes.

The original documents were presented in a Foundation Performance Committee seminar in 1998. Subsequently the documents were revised, peer reviewed, and published as Document No. FPA-SC-10 Revision 0, dated October 9, 2003, which included Checklist #’s 1-7. This Revision 1 is the result of changes and additions that were begun in February of 2005. The additions in Revision 1 are Checklist #’s 8 and 9.

The subjects of the checklists are presented in the following order:

QC Checklist #1 – POST-TENSION SYSTEM FOUNDATION MAKE-UP
QC Checklist #2 – CONCRETE PLACEMENT
QC Checklist #3 – POST-TENSION STRESSING
QC Checklist #4 – CONVENTIONAL (REBAR) FOUNDATION MAKE-UP
QC Checklist #5 – CONSTRUCTION (BUILDER’S) PIERS
QC Checklist #6 – REPAIR PIERS
QC Checklist #7 – SEGMENTED REPAIR PILES
QC Checklist #8 – PRE-CONSTRUCTION SITE REVIEW
QC Checklist #9 – POST-CONSTRUCTION SITE REVIEW

These topics were judged to represent the major types of foundation construction and foundation repairs found in the Houston area. While these topics are certainly not inclusive of every inspection situation or construction method in use, they offer a basic set of guidelines for the majority of inspections that would be encountered in typical residential construction.

The first order of business for the subcommittee was to establish a checklist heading format for each inspection. The uppermost portion of the checklist is meant to establish a context for the inspection. The basics of the site such as, the builder, subdivision, address, lot and block, are set out at the top of the
checklist. The next section is meant to establish the parameters that will govern the rest of the inspection. The most important of these deals with the plans. It was the opinion of the subcommittee that no inspection should be undertaken without a set of plans, and the plans should include the name of the engineer, the date of the plans and the detail sheet. Other pertinent details of the site that are covered in this section are the date, the time, the weather, etc. These guidelines were followed on each checklist, with variations dictated by the context of the inspection.

Once the context is established in the heading, the checklist moves on to sections relating to different aspects of each inspection. In general, these sections are documented by simply checking the item to show that it has been correctly completed. The checkmark (✓) serves to show that the item has been considered and complies with the plans, whereas an (X) denotes that the item does not comply with the plans. In some sections, direct questions are asked that should be answered. Finally, the lower sections of the checklists generally have reference to a drawing of the slab, the piers or piles, or the foundation being repaired. The drawings further document the conditions specific to the site and the foundation and allow the inspector to orient the data being described in the conclusion of the inspection.

Each of these checklists represents an attempt to document the events related to a specific foundation project or a specific foundation repair. It should be remembered that all the answers and data reported are typically the only documentation of what actually happened during this phase of construction. For this reason, every item is pertinent and should be given careful consideration during the inspection. Though many of the items listed are fairly common knowledge to the typical inspector or builder, it is the sequencing and nuances of certain questions and items listed, which are the greatest advantage of using the checklists.
TABLE OF CONTENTS

QC Checklist #1 – POST-TENSION SYSTEM FOUNDATION MAKE-UP

QC Checklist #2 – CONCRETE PLACEMENT

QC Checklist #3 – POST-TENSION STRESSING

QC Checklist #4 – CONVENTIONAL (REBAR) FOUNDATION MAKE-UP

QC Checklist #5 – CONSTRUCTION (BUILDER’S) PIERS

QC Checklist #6 – REPAIR PIERS

QC Checklist #7 – SEGMENTED REPAIR PILES

QC Checklist #8 – PRE-CONSTRUCTION SITE REVIEW

QC Checklist #9 – POST-CONSTRUCTION SITE REVIEW
QC Checklist #1 - POST-TENSION SYSTEM FOUNDATION MAKE-UP

<table>
<thead>
<tr>
<th>Site</th>
<th>Forms</th>
<th>ADDITIONAL REVIEWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subdivision Lot</td>
<td>Yes</td>
<td>Date</td>
</tr>
<tr>
<td>Other</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Lot Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fill on site Yes</td>
<td>Forms secure</td>
<td>Date</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compaction verified by Geotechnical Engineer:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Will foundation make up drain:</td>
<td>No rebar or WWF (mesh) touching forms</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trees removed</td>
<td>Pier tops clean</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are trees within 20’ of foundation Yes</td>
<td>No tendons spaced over 6’-0”</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water in beams</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Average Depth (in)</td>
<td>Ample chairs all tied</td>
<td></td>
</tr>
<tr>
<td>Will water drain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumbing obstructions accommodated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pier tops clean</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TENDONS

- Count: L to R F to B Garage
- Total
- Variance
- Explain
- Number of tendons left on site
- Rebar
- 1/2” tendons
- Other
- No tendons spaced over 6’-0”
- 20D nails used at castings
- Live ends stripped of plastic not over 1” or taped
- Cathead clamps all tight
- All intersections tied
- All tendons supported at intersections
- Dead ends have 3/4” clearance to forms
- All S Hooks crimped
- Beam tendons draped and secured by #3 rebar stakes or concrete bricks
- Ample chairs all tied

Tendon grid secured for concrete placement

- Yes | No

POLYETHYLENE SHEETING

- 6-mil Lapped and Taped
- Seated in bottom of beams
- Secured at sides
- Mastic/tape applied at plumbing

REINFORCING STEEL

- WWF (Mesh) Size
- Roll
- Sheet
- OR #3 or # Rebar @ (in.)
- Center both ways
- Lapped per plans
- No rebar or WWF (mesh) touching forms
- Supported by chairs per plans

BEAM SECTION

- Rebar: grade
- Clearances per plan: Sides
- Bottom
- Top
- Splices lapped per plan
- Corner rebar installed at corners & dead ends
- Typical Rebar/Exterior Beams
- Typical Rebar/Interior Beams
- Corner bars installed at dead ends
- Yes | No
- Bay Windows or Porches
- Rebar
- Stirrups
- Extra Rebar Added
- Diagonal Rebar at Re-entrant Corners
- No of Corners
- Nose Bars @
- Construction Joints
- Anchor bolts on site
- Diameter (in)
- Length (in)
- Other Fasteners

IS FOUNDATION READY FOR CONCRETE PLACEMENT?

- Yes | No

SKETCH

CHANGES NEEDED:

Quality Controller’s Signature

Superintendent’s Signature
QC Checklist #2 - CONCRETE PLACEMENT

Builder: [Name]
Subdivision: [Name]
Date: [Day Month Year]
Time: [Time]

Site Address: [Address]
Lot: [Lot Number]
Blk: [Block Number]
Sec: [Section Number]
Plan #: [Plan Number]
Cable Count: [Details]

Design Engineer: [Name]
Superintendent: [Name]
Q.C. Arrival Time: [Time]
Departure Time: [Time]

Copy of Foundation Makeup Report Provided: Yes [] No []
Date of Copy: [Date]

Items Repaired: Yes [] No []

Concrete Contractor: [Name]
Detached Garage: Yes [] No []

Permit #: [Permit Number]
Check (✓) If Items Comply With The Plans

- [] Forms secure
- [x] Floats installed
- [] Proper clearance at floats
- [] Garage closed in

Explain:

WEATHER

- Weather conditions: Prior 48 Hours: [Details]
- START: [Time]
- FINISH: [Time]

- Will temperature be greater than 40° F for five hours following concrete placement: Yes [] No []
- Will temperature be greater than 32° F for 48 hours following concrete placement: Yes [] No []
- Forty-eight hour forecast: HIGH TEMPERATURE: [Temperature] LOW TEMPERATURE: [Temperature]

CONCRETE

- Concrete Company: [Name]
- Batch Plant: [Name]
- Tickets on site? Yes [] No []

- Delivered by truck over what distance: [Distance]
- Was a pump used? Yes [] No []
- Pump Co.:

- Mix: [Details]
- Pump primer dumped outside of forms: Yes [] No []

- Sack Mix:
 - [] 4 ½
 - [] 5
 - [] Other
- OR
 - [] Strength Mix
 - [] Strength: [Details] (psi)

- Additives: [Details]
- NO CALCIUM CHLORIDE—APPLIES TO POST TENSION SLAB

- Fly Ash: Type C? Yes [] No []
- %

- Slump as ordered from plant: [Details] (in)

- Explain (Discrepancies if slump is different):

- Was concrete consolidated by vibrator: Yes [] No []
- Other:

- Test Cylinders Taken: Yes [] No []
- Testing Company:

- Slump Test Taken: Yes [] No []
- Testing Company:

- If water is added at the jobsite, show the amounts over ten gallons and give a visual estimate of the final slump

Time

- Draw a diagram of the slab below showing the locations of each load by truck number

Truck #

<table>
<thead>
<tr>
<th>Truck #</th>
<th>Poured Gallons</th>
<th>Added</th>
<th>Placement Location</th>
<th>Est. Slump</th>
<th>Tested Slump</th>
<th>Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Anchor bolts on site: Yes [] No []
- Diameter: [Details] (in)
- Length: [Details] (in)

- Other Fasteners: [Details]

- Describe provisions for curing:

SKETCH

ADDITIONAL COMMENTS: [Details]

Quality Controller’s Signature: [Signature]
Superintendent’s Signature: [Signature]
QC Checklist #3 – POST-TENSION STRESSING

<table>
<thead>
<tr>
<th>CLIENT</th>
<th>QUALITY CONTROL COMPANY</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Builder</th>
<th>Subdivision</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Site Address</th>
<th>Lot</th>
<th>Blk</th>
<th>Sec</th>
<th>Plan specific</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Plan #:</th>
<th>Cable Count</th>
<th>Design Engineer</th>
<th>Superintendent</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Plan provided at site</th>
<th>Yes</th>
<th>No</th>
<th>Weather</th>
<th>Plan Date</th>
<th>Detail Sheet Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Concrete Placement Date</th>
<th>Stress Date</th>
<th>Partial Stress Date</th>
<th>Post-Tension Company</th>
<th>Permit #:</th>
</tr>
</thead>
</table>

Check (✓) If Items Comply With The Plans

(✗) If Items Do Not Comply With The Plans

☐ Are there any cracks in the surface of the slab Yes ☐ No ☐ Describe __________________________

ADDITIONAL REVIEWS

Date ______ Time ______

Estimate size and locate on the sketch below

☐ Are elongations specified on the plans Yes ☐ No ☐

☐ Are the tendons painted at the edge of the slab Yes ☐ No ☐

☐ What is the predetermined distance between the mark and the edge of the slab ______(in)

☐ Are the wedges placed in a vertical position Yes ☐ No ☐

☐ Is there evidence of gripper marks on the gripper end of all tendons Yes ☐ No ☐ *(If no, show location on sketch below)*

☐ Are tendons stressed from two ends Yes ☐ No ☐ If So, How Many ______

☐ If on site during stressing, was stressing load recorded? Yes ☐ No ☐ If yes, attach pressure readings

![1/2" Diameter Tendon Elongation Measurements](chart.png)

USE CHART IF ELONGATIONS ARE NOT LISTED ON PLAN, OR MULTIPLY TENDON LENGTH IN FEET BY 0.08 TO CALCULATE APPROXIMATE ELONGATION IN INCHES FOR LENGTH OVER 30 FEET.

SKETCH

Draw a simple sketch of the foundation configuration noting all tendon locations and their elongation measurements. Also note any problems which you have observed, particularly blowouts at corners or the garage entry and cracks.

FOLLOWING STRESS VERIFICATION:

☐ Are the tendon ends cut inside the pocket former

☐ After stressing are the nails cut

☐ Are the tendon ends grouted with a non-shrink grout

Quality Controller’s Signature

Superintendent’s Signature
Quality Control Checklist #4—Conventional (Rebar) Foundation Make-Up

Builder:

Subdivision:

Date:

Time:

Site Address:

Lot

Blk

Sec

Plan site specific

- Yes
- No

Plan #:

Design Engineer:

Superintendent:

Plan provided at site

- Yes
- No

Date

Detail Sheet Date

Concrete Contractor

Placement Date

Detached Garage

- Yes
- No

Permit #:

Weather:

- Previous 48 Hrs.
- Current

Check (√) If Items Comply With The Plans

(X) If Items Do Not Comply With The Plans

Client Quality Control Company

QC Checklist #4—Conventional (Rebar) Foundation Make-Up

<table>
<thead>
<tr>
<th>Field</th>
<th>Specification</th>
<th>Check</th>
<th>Field</th>
<th>Specification</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subdivision Lot</td>
<td></td>
<td></td>
<td>Lot Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lot Address</td>
<td></td>
<td></td>
<td>Fill on site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan specific</td>
<td></td>
<td></td>
<td>Compaction verified by Geotechnical Engineer:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Will make up drain</td>
<td></td>
<td></td>
<td>Will trees removed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are trees within 20° of foundation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td>(in)</td>
<td></td>
<td>Measured: Screeds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stringline</td>
<td></td>
<td></td>
<td>Describe Pad Material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level and firm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forms secure</td>
<td></td>
<td></td>
<td>Forms installed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floats installed</td>
<td></td>
<td></td>
<td>Proper clearance at floats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garage front closed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Depth</td>
<td>(in)</td>
<td></td>
<td>Actual Depth</td>
<td>(in)</td>
<td></td>
</tr>
<tr>
<td>Interior Depth</td>
<td>(in)</td>
<td></td>
<td>Actual Width</td>
<td>(in)</td>
<td></td>
</tr>
<tr>
<td>Average depth into undisturbed soil</td>
<td>(in)</td>
<td></td>
<td>Clean of loose soil & debris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water in beams</td>
<td></td>
<td></td>
<td>Average Depth</td>
<td>(in)</td>
<td></td>
</tr>
<tr>
<td>Will water drain</td>
<td></td>
<td></td>
<td>Plumbing obstructions accommodated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pier tops clean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyethylene Sheeting</td>
<td></td>
<td></td>
<td>6-mil. Lapped and Taped</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seated in the bottom of beams secured at sides</td>
<td></td>
<td></td>
<td>Mastic/tape applied at plumbing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of piers</td>
<td></td>
<td></td>
<td>Are pier tops clean of debris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Beams: Steel size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Beams: Steel size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra Beam depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proper Clearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebar clean of mud and excessive rust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Void Forms in bottom of beam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly covering void forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WWF: (Mesh)</td>
<td></td>
<td></td>
<td>OR #3 or #</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lapped per plans</td>
<td></td>
<td></td>
<td>Rebar @ (in.) on center both ways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Void Forms</td>
<td></td>
<td></td>
<td>Supported by chairs per plans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional steel required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Void Forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (in) Poly covering void forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagonals: Size</td>
<td></td>
<td></td>
<td>Number in slab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fireplace pads: Size</td>
<td></td>
<td></td>
<td>Placement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bay windows: Size</td>
<td></td>
<td></td>
<td>Placement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other projections:</td>
<td></td>
<td></td>
<td>Control joints</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction joints</td>
<td></td>
<td></td>
<td>Anchor bolts on site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter (in)</td>
<td></td>
<td></td>
<td>Length (in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Fasteners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Reinforcing

Sketch

Quality Controller’s Signature

Superintendent’s Signature
QC Checklist #5 – CONSTRUCTION (BUILDER’S) PIERS

Builder: ____________________ **Subdivision:** _______________ **Date:** ____________ **Time:** ____________

Site Address: ____________ **Lot:** ____________ **Blk:** ____________ **Sec:** ____________ **Plan** ____________ **site specific** ____________ **Yes** ☑ **No** ☑

Plan #: ____________ **Design Engineer:** ____________________ **Superintendent:** ____________________ **Geotechnical Engineer:** ____________________

Plan provided at site ☑ **Yes** ☑ **No** ☑

Plan Date: ____________ **Detail Sheet Date:** ____________

Weather at site: ____________

Concrete Contractor: ____________________ **Geotechnical Report #:** ____________

SCHEDULED REVIEWS

Subdivision Lot: ____________ **Other:** ____________ **Explain:** ____________

Fill on site: ☑ **Yes** ☑ **No** ☑

Compaction verified by Geotechnical Engineer ☑ **Yes** ☑ **No** ☑ **Date:** ____________

Trees removed ☑ **Yes** ☑ **No** ☑ **Location:** ____________

Are trees within 20’ of foundation ☑ **Yes** ☑ **No** ☑

PIERS

Name of drilling company: ____________________

Can drill equipment access all pier locations ☑ **Yes** ☑ **No** ☑

Type of drilling apparatus: Truck Mounted: ____________ **Bobcat:** ____________ **Other:** ____________

Total number of piers: ____________

<table>
<thead>
<tr>
<th>Shaft Dia</th>
<th>Bell Dia</th>
<th>Pier Depth</th>
<th>No. Rebar</th>
<th>Rebar Size</th>
<th>Stirrups</th>
<th>Spacing</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SKETCH TYPICAL PIER SHOWING DEPTH

Describe the manner of measuring the bell sizes: ____________

(Bell checking tool required)

Boring logs from Geotechnical report on site ☑ **Yes** ☑ **No** ☑

Describe bearing strata: ____________

Pocket Penetrometer reading taken from auger cutting ☑ **Yes** ☑ **No** ☑ **TSF** ____________ **Note locations below:** ____________

Was water apparent in pier hole ☑ **Yes** ☑ **No** ☑ **Depth:** ____________ " Action Taken ____________

REINFORCING

Rebar placed per plan ☑ **Yes** ☑ **No** ☑

Rebar grade ____________

Does rebar extend above pier top ☑ **Yes** ☑ **No** ☑ **How much above:** ____________ **(in)** **Sleeved** ☑ **Yes** ☑ **No** ☑ **Describe:** ____________

CONCRETE

Will concrete truck be able to access site ☑ **Yes** ☑ **No** ☑

Concrete company: ____________ **Truck numbers:** ____________

Was pump truck used ☑ **Yes** ☑ **No** ☑

Specified strength of concrete: ____________ **psi**

Was concrete placed on the same day as the pier drilling ☑ **Yes** ☑ **No** ☑

Estimated time of completion: ____________

If not, explain: ____________

Draw a sketch of the structure indicating the pier placement: ____________

ARE THE PIER Holes READY FOR CONCRETE PLACEMENT ☑ **Yes** ☑ **No** ☑

CHANGES NEEDED: ____________

Quality Controller’s Signature ____________________ **Superintendent’s Signature** ____________________
QC Checklist #6 – REPAIR PIERS

<table>
<thead>
<tr>
<th>Owner ____________</th>
<th>Subdivision ____________</th>
<th>Date ______</th>
<th>Time ______</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Address _______</td>
<td>Lot ______ Blk ______ Sec ______</td>
<td>Plan site specific Yes [] No []</td>
<td></td>
</tr>
<tr>
<td>Plan #: ____________</td>
<td>Design Engineer ______</td>
<td>Superintendent ______</td>
<td>Geotechnical Engineer ______</td>
</tr>
<tr>
<td>Plan provided at site Yes [] No []</td>
<td>Plan Date ______</td>
<td>Detail Sheet Date ______</td>
<td></td>
</tr>
<tr>
<td>Weather at site ______</td>
<td>Permit # ______</td>
<td>Geotechnical Report # ______</td>
<td></td>
</tr>
</tbody>
</table>

Check (✓) If Items Comply With The Plans
(X) If Items Do Not Comply With The Plans

<table>
<thead>
<tr>
<th>Site</th>
<th>Additional Reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subdivision Lot ______</td>
<td>Other ______</td>
</tr>
<tr>
<td>soils Report on site Yes [] No []</td>
<td>Bearing Soils at what depth ______ (ft)</td>
</tr>
<tr>
<td>Test hole drilled to what depth ______ (ft)</td>
<td>Bearing soils at ______ (ft)</td>
</tr>
<tr>
<td>Underground plumbing test Yes [] No []</td>
<td>Water lines under slab Yes [] No []</td>
</tr>
<tr>
<td>Site obstructions to drilling, Describe: ______</td>
<td>Were builder’s piers present Yes [] No []</td>
</tr>
<tr>
<td>Trees/shrubs removed or relocated Yes [] No []</td>
<td>Location(s) ______</td>
</tr>
</tbody>
</table>

UNDERPINNING

Name of repair contractor: ______
Method of repair: ______
Total number of piers: ______ | Interior ______ | Exterior ______ |

PIER SIZES

<table>
<thead>
<tr>
<th>Shaft Dia.</th>
<th>Bell Dia.</th>
<th>Pier Depth</th>
<th>No.</th>
<th>Rebar Size</th>
<th>Stirrups</th>
<th>Rebar Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(in)</td>
<td>(in)</td>
<td>(ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in)</td>
<td>(in)</td>
<td>(ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in)</td>
<td>(in)</td>
<td>(ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in)</td>
<td>(in)</td>
<td>(ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in)</td>
<td>(in)</td>
<td>(ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sketch Typical Pier Showing Depth

Describe the manner of measuring the bell sizes: ______
(Bell checking tool required)

Describe bearing strata: ______

Pocket Penetrometer reading Yes [] No [] | TSF ______ | Note locations below ______
Was water apparent in pier hole Yes [] No [] | Depth ______ (in) | Action Taken ______

REINFORCING

Rebar per plans Yes [] No []
Rebar grade ______

HELICAL PIERS

Test hole depth ______ (ft) | Bearing Data ______ | Pier Log Onsite Yes [] No [] |
Helix Size ______ | Bracket Style ______ | Shaft Diameter ______

CONCRETE

Will concrete truck be able to access site Yes [] No [] | Was pump truck used Yes [] No [] |
Concrete company: ______ | Truck numbers: ______ | Batch Time ______ | Onsite Time ______
Specified strength of concrete: ______ psi | Slump as delivered ______ | Water added Yes [] No [] | Amount ______ (gal) |
Was concrete placed on the same day as the pier was belled Yes [] No [] |
Projected time of completion of concrete placement ______
If not, explain: ______
ESTIMATED MAXIMUM LIFT ______ (in)
VOIDS TO BE GROUTED (MUD JACKED) Yes [] No []

Draw a sketch of the structure indicating the pier placement ====>

ARE THE PIER HOLES READY FOR CONCRETE PLACEMENT Yes [] No []

CHANGES NEEDED: ______

Sketch ______

Quality Controller’s Signature ______ | Superintendent’s Signature ______
QC Checklist #7 – SEGMENTED REPAIR PILES

Builder: ____________________ Subdivision: ____________________ Date: ___________ Time: ___________
Site Address: Lot ______ Blk ______ Sec ______ Plan site-specific Yes ☐ No ☐
Plan #: __________ Design Engineer: ____________________ Superintendent: __________ Geotechnical Engineer: __________
Plan provided at site Yes ☐ No ☐ Plan Date: __________ Detail Sheet Date: __________
Weather at site: ________ Permit #: __________ Geotechnical Report #: __________

Check (✓) If Items Comply With The Plans
(X) If Items Do Not Comply With The Plans

SITE
Subdivision Lot: ________ Other: ________ Explain: ____________________
Soils Report on site Yes ☐ No ☐ Bearing Soils at what depth: ________ (ft)
Test hole drilled to what depth: ________ (ft) Bearing soils at: ________ (ft)
Underground plumbing test: Yes ☐ No ☐ Water lines under slab: Yes ☐ No ☐
Site obstructions to drilling, Describe: ____________________
Trees/shrubs removed or relocated: Yes ☐ No ☐ Location(s): ____________________

ADDITIONAL REVIEWS
Date: __________ Time: __________

NAME OF REPAIR CONTRACTOR: ____________________
Piling system: ____________________
Total number of piles: ________ Interior ☐ Exterior ☐

FIELD OBSERVATIONS

<table>
<thead>
<tr>
<th>Round</th>
<th>Pile Size</th>
<th>(A) Segment Length</th>
<th>(B) Number of Segments</th>
<th>(C) Pile Cap Size</th>
<th>(D) Total Depth From Top of Slab</th>
<th>(E) Total Depth From Top of Pile Cap</th>
<th>(F) Observed Measurement of Lift at Refusal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Round</td>
<td>Square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(in)</td>
<td>(in)</td>
<td>(in)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(A x B) + (C x D) + E = TOTAL DEPTH

Total number of pilings observed driven to completion: ________ (Minimum five is recommended)
Was pile log available at the site: Yes ☐ No ☐ Explain: ____________________
Were the piles shimmied immediately upon completion of being driven: Yes ☐ No ☐
If no, explain: ____________________
Is the pile cap horizontal: Yes ☐ No ☐ If no, explain: ____________________
Were the piles driven without interruption: Yes ☐ No ☐ If no, explain: ____________________
Were builders' piers detached prior to jacking: Yes ☐ No ☐
Were final shims determined to be tight: Yes ☐ No ☐
What is the method of interlock: ____________________
Were interior piles installed: Yes ☐ No ☐ If so, were tunnels used: Describe: ____________________
Was dewatering system used and maintained: Yes ☐ No ☐
Describe materials used in backfilling tunnels: ____________________
Describe method of protecting tunnel entrance from water intrusion: ____________________
Was jetting required to install piles: Yes ☐ No ☐ Explain: ____________________

ESTIMATED MAXIMUM LIFT: (in)
VOIDS TO BE GROUTED (MUD JACKED): Yes ☐ No ☐

Draw a sketch of the structure indicating the pier placement =========>

SKETCH

CHANGES NEEDED: ____________________

Quality Controller’s Signature: ____________________ Superintendent’s Signature: ____________________
QC Checklist #8 – PRE-CONSTRUCTION SITE REVIEW

<table>
<thead>
<tr>
<th>Builder</th>
<th>Subdivision</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Address</td>
<td>Lot</td>
<td>Blk</td>
</tr>
<tr>
<td>Architectural Plan #</td>
<td>Date</td>
<td>Architect/Designer Phone Number</td>
</tr>
<tr>
<td>Site Survey</td>
<td>Date</td>
<td>Surveyor Phone Number</td>
</tr>
<tr>
<td>Geotechnical Report #</td>
<td>Date</td>
<td>Geotechnical Engineer Phone Number</td>
</tr>
<tr>
<td>Foundation Plan #</td>
<td>Date</td>
<td>Design Engineer Phone Number</td>
</tr>
<tr>
<td>Superintendent</td>
<td>Superintendent Phone Number</td>
<td></td>
</tr>
<tr>
<td>Plan provided at site</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Permit #</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check (√) If Items Comply With The Plans
(×) If Items Do Not Comply With The Plans

SITE DESCRIPTION:

ADDRESS
Does the site have an address or legal only
Yes | No | Is it posted onsite
Yes | No | Where

GOVERNING AUTHORITY
Municipality

SUBDIVISION LOT
Center lot | Cul de sac | Corner lot | Zero lot line | Other

ACREAGE LOT
Describe size and characteristics of the site

LOT USAGE
Single Family Residence | Townhouse | Multi-Family | Other

UTILITIES
Electricity | Water | Gas | Porta Can | Sewer : Municipal | Septic

FENCING
Type | Will it be removed or altered

LOT ACCESS
Paved street | All weather road | Other

PAD FILL
Will fill be necessary
Yes | No | Estimated height | Recommended fill type |
Compaction Testing Co. | Will pad fill extend a minimum of five feet beyond house footprint
Yes | No |

TREE INVENTORY:

TREES ONSITE
Do trees presently exist on site
Yes | No | Describe
Do trees exist within thirty feet of the foundation
Yes | No | Describe
What is the history of the trees on the site in the past five years

Are aerial photos available
Yes | No |

TREES OVER 4” DIAMETER WITHIN 30’ OF SLAB
Number | Species |
Trunk Diameter | Remove | Remain

Are trees marked for removal
Yes | No | Per the Geotechnical Report describe the method of dealing with tree excavations and organic material

Has the geotechnical criteria been fulfilled
Yes | No | If no what should be done

DEMOLITION AND SITE CLEARANCE

Have significant structures been removed from the site
Yes | No | Describe
Did these structures have foundations or piers
Yes | No | Were they removed
Yes | No |
Do the following utilities pre-exist
Plumbing lines | Gas lines | Sewer lines | Electrical communication lines
Site drainage lines | Describe existing utilities

Is there evidence of previous drainage ditches
Yes | No | Filled in ponds or low spots
Yes | No | Other areas which have been altered by added fill or excavation
Yes | No | Describe

NATURAL DRAINAGE
Where does the site drain to

Will alterations to the site disturb the natural drainage
Yes | No | Describe
Can natural drainage be maintained during construction
Yes | No | Describe
Does the site drainage overflow onto the adjacent property
Yes | No | Describe
Does the surrounding property drain onto the site
Yes | No | Describe

CONTROLLED DRAINAGE
Where will the site drain to

Will the drainage be FHA TYPE A or TYPE B
What municipality controls the drainage

Is there a drainage plan relative to the site if so describe
Yes | No | If no will there be a plan
Yes | No |
Is the site in the flood plain
Yes | No | Describe
Can positive drainage be maintained thru the construction process
Yes | No | Describe
Canstorm water run off be properly managed
Yes | No | What provisions have been made for proper control

SURVEY

Does a survey of the site exist
Yes | No | Date | Surveyor | County Number
Does a survey of the site exist
Yes | No | Date | Surveyor | County Number
Legal Description | Easements noted
Yes | No | Building set backs
Yes | No |
Are the iron rods flagged
Yes | No | Have conditions on the site changed since the survey
Yes | No |

EXPLANATION

Is the plot plan on site
Yes | No | Will the final floor height afford positive drainage around the house
Yes | No |
What is the proposed elevation for the slab | How is it determined

SKETCH

Attach a sketch of the site showing the placement of the house, the site drainage patterns and the location of the existing trees
QC Checklist #9 – POST-CONSTRUCTION SITE REVIEW

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Builder</td>
<td></td>
</tr>
<tr>
<td>Subdivision</td>
<td></td>
</tr>
<tr>
<td>Site Address</td>
<td>Lot</td>
</tr>
<tr>
<td>Blk</td>
<td>Sec</td>
</tr>
<tr>
<td>Architectural Plan #</td>
<td>Date</td>
</tr>
<tr>
<td>Site Survey</td>
<td>Date</td>
</tr>
<tr>
<td>Geotechnical Report #</td>
<td>Date</td>
</tr>
<tr>
<td>Foundation Plan #</td>
<td>Date</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
</tr>
</tbody>
</table>

Check (✓) If Items Comply With The Plans
(✗) If Items Do Not Comply With The Plans

SITE DESCRIPTION:
- **Address**: Does the site have an address or legal only Yes ☐ No ☐ Is it posted onsite Yes ☐ No ☐ Where ___________
- **Governing Authority**: Municipality
- **Subdivision Lot**: Center lot ☐ Cul de sac ☐ Corner lot ☐ Zero lot line ☐ Other ☐
- **Acres Lot**: Describe size
- **Lot Usage**: Single Family Residence ☐ Townhouse ☐ Multi-Family ☐ Other ☐
- **Utilities**: Electricity ☐ Water ☐ Gas ☐ Sewer: Municipal ☐ Septic ☐
- **Fencing**: Type ☐ Will it be removed or altered
- **Landscape Fill**: Was fill necessary to fine grade the yard Yes ☐ No ☐ Average Height
- **Type of Fill**: Native Soil ☐ Select Structural ☐ Bank Sand ☐ Bull Rock ☐ Other ☐
- **For sloping lots does the fill extend beyond the house footprint for min. of 5’-0’’ Yes ☐ No ☐
- **Is the grading flatter than a 3 to 1 ratio, horizontal to vertical Yes ☐ No ☐
- **Landscape**: Is the landscape plan completed Yes ☐ No ☐ If no describe what remains
- **Do the flower beds drain Yes ☐ No ☐ If no describe Yes ☐ No ☐
- **Is an irrigation system installed Yes ☐ No ☐ If yes has it been leak tested Yes ☐ No ☐
- **Is the yard sodded Yes ☐ No ☐ Describe the areas that are not sodded Yes ☐ No ☐
- **Are gravel borders installed around the foundation Yes ☐ No ☐ Does the gravel have a impermeable liner Yes ☐ No ☐
- **Are they installed as part of a functional French Drain system with a discharge away from the foundation Yes ☐ No ☐
- **Pools**: Is there a pool Yes ☐ No ☐ Describe Yes ☐ No ☐
- **Is the pool deck drainage system designed to divert and discharge water away from the foundation Yes ☐ No ☐
- **If no describe the problem Yes ☐ No ☐
- **What is the distance of the pool from the foundation feet Yes ☐ No ☐ Describe Yes ☐ No ☐

TREES ON SITE:
- **Do trees presently exist on site Yes ☐ No ☐ Describe Yes ☐ No ☐
- **Do trees exist within twenty feet of the foundation Yes ☐ No ☐ Describe Yes ☐ No ☐

TREE SURVEY FOR TREES WITHIN 30 FEET OF FOUNDATION:
<table>
<thead>
<tr>
<th>Location</th>
<th>Species</th>
<th>Trunk Diameter</th>
<th>Estimated Height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Describe the general health of the trees

Surface Drainage:
- Where does the site drain to Yes ☐ No ☐ Describe Yes ☐ No ☐
- Have alterations to the site changed the natural drainage Yes ☐ No ☐ Describe Yes ☐ No ☐
- Does the site drainage overflow onto the adjacent property Yes ☐ No ☐ Describe Yes ☐ No ☐
- Does the surrounding property drain onto the site Yes ☐ No ☐ Describe Yes ☐ No ☐

Controlled Drainage:
- Where does the drainage system discharge Yes ☐ No ☐ Describe Yes ☐ No ☐
- What governing authority mandates the requirements for the drainage Yes ☐ No ☐
- Is the site in the flood plain Yes ☐ No ☐ Unknown Yes ☐ No ☐
- What is the source of this information Yes ☐ No ☐
- There is evidence that positive drainage was not maintained through the construction process Yes ☐ No ☐
- Is there evidence of drainage provisions for storm water run off to be properly managed Yes ☐ No ☐
- Is there a drainage plan relative to the site Yes ☐ No ☐ Describe Yes ☐ No ☐
- Is valley run off adequately dispersed Yes ☐ No ☐
- Does the house have gutters Yes ☐ No ☐ Describe Yes ☐ No ☐
- Do the gutters divert water a minimum of 5 ft. away from the slab Yes ☐ No ☐
- Are splash blocks in place Yes ☐ No ☐
- Where does the A/C overflow drain Yes ☐ No ☐
- Other impediments to effective drainage Yes ☐ No ☐

Final Survey:
- Have conditions relative to the site survey changed Yes ☐ No ☐ Easements ☐ Aerial Easements ☐ Setbacks ☐ Other ☐
- What conditions at the site have changed since the form survey Flatwork ☐ Fences ☐ Pool ☐ Other changes Yes ☐ No ☐
- Are the iron rods flagged and rods clearly marked for the owner Yes ☐ No ☐
- Does the final survey show elevations of the yard and the directions of the slope away from the slab Yes ☐ No ☐
- Is the slope from the slab least 6 inches and 10 feet Yes ☐ No ☐ List problem areas Yes ☐ No ☐
- Does the final survey show elevation of the top of slab relative to mean sea level Yes ☐ No ☐
- Has an elevation survey of the slab been completed Yes ☐ No ☐
- As per TRCC recommendations Yes ☐ No ☐
- Does maximum differential elevation measurements of the slab exceed 1 ½” Yes ☐ No ☐ Describe Yes ☐
- Is there minimum slab exposure of 6” around perimeter Yes ☐ No ☐

SKETCH
- Attach a sketch of the site showing the placement of the house, the site drainage patterns and the location of the existing trees